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DIFFUSIVE LOGISTIC EQUATIONS WITH INDEFINITE WEIGHTS:
POPULATION MODELS IN DISRUPTED ENVIRONMENTS II*

ROBERT STEPHEN CANTRELL7 AND CHRIS COSNERTY

Abstract. The dynamics of a population inhabiting a strongly heterogeneous environment are modeled
by diffusive logistic equations of the form u, =V - (d(x, w)Vu)—b(x) - Vu+m(xju— cu® in Q x (0, ), where
u represents the population density, d(x, u) the (possibly) density dependent diffusion rate, b(x) drift, ¢
the limiting effects of crowding, and m(x) the local growth rate of the population. The growth rate m(x)
is positive on favorable habitats and negative on unfavorable ones. The environment Q is bounded and
surrounded by uninhabitable regions, so that u =0 on 9Q x (0, ). In a previous paper, the authors considered
the special case d(x, u)=d, a constant, and b=0, and were able to make an analysis based on variational
methods. The inclusion of density dependent diffusion and/or drift makes for more flexible and realistic
models. However, variational methods are mathematically insufficient in these more complicated situations.
By employing methods based on monotonicity and positive operator theory, many previous results on the
dependence on m of the overall suitability of the environment can be recovered and some new results can
be established concerning environmental quality dependence on b. In the process, a bifurcation and stability
analysis is made of the model which includes some new estimates on eigenvalues for associated linear
problems.
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1. Introduction. Reaction-diffusion equations have been widely used as models
for populations whose densities vary with location as well as time. If the environment
is strongly heterogeneous, the coefficients describing the growth and diffusion of the
population may vary with location as well. In an earlier article, we studied a diffusive
logistic model in which the diffusion rate of the population was constant but the growth
rate was assumed to vary with position, being positive in regions of favorable habitat
and negative in unfavorable regions. The present article is devoted to extending our
results to models in which the diffusion rate varies with position and population density,
and the population may be subject to drift in addition to pure diffusion. These more
complicated models incorporate effects which are often present in real situations, and
thus can give more complete descriptions of biological phenomena. Since these models
are quasilinear rathier than semilinear, and in general are not in variational form, the
technical aspects of the analysis are somewhat different and more difficult than in the
case of simple Fickian diffusion. The technical complexity is inherent in the models
we consider, and cannot be avoided if we are to give a rigorous analysis. However,
we have introduced into our models only the sorts of effects which theoretical ecologists
have suggested to us as being especially important.

Since the implications of our analysis should be of some interest to biological
scientists, we give a brief summary of them in the last section, and conclude each
section of the paper with a fairly detailed discussion of the main results from a biological
viewpoint. Some of the discussion overlaps that given in [6], [7], and [9]. Additional
references are given in [6] and [9]. In [7] we use relatively simple mathematics to
analyze a number of special cases of the general models considered here and give a
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moderately detailed biological discussion of their interpretation. A reader whose
primary interest is in the biological aspects of the work may find the present article
more accessible after reading [7].

The situation we wish to model is that of a species inhabiting a bounded region
of variable habitat, and dispersing throughout that region via a process of diffusion
which may be affected by population density and location and which may also involve
drift due to wind, current, or environmental gradients. The questions we address are
those of deciding how environmental factors and/or the density dependence of the
diffusion affect the population. Obviously, if the overall environment includes too
much poor habitat the population cannot be expected to persist. However, the arrange-
ment of favorable and unfavorable regions turns out to play an important role in
determining the overall suitability of an environment. Questions about the effects of
the arrangement of favorable and unfavorable regions are especially important in
refuge theory; for example, is one large preserve likely to be more or less effective in
sustaining a population than several small preserves? Of course, the answers to such
questions will depend on the details of the biology but models can suggest answers in
some cases and serve to sharpen discussion in others. Island biogeography theory has
been widely used in the context of refuge theory. The sort of models we consider
provide an alternative approach. We discuss this point in some detail and give a number
of references in [6]. One object of the present work is to extend the results of [6] to
include models with more complex and realistic sorts of diffusion and drift processes.
Another object is to study directly the effects of density dependent diffusion and of
drift. We find that density dependence in the diffusion rate may have effects similar
to those of depensation in the growth dynamics, as studied in [20]. Specifically, models
with density dependent diffusion may admit multiple equilibria even if the correspond-
ing dynamics with constant diffusion yield a unique equilibrium. The effects of drift
in the case of a homogeneous environment and constant diffusion are discussed in
[22]. We extend some of the results of [22] to models with variable diffusion and
growth coefficients, but we have so far been unable to give a complete description of
the effects of drift on the population dynamics. _

There is a vast literature on traveling waves in reaction-diffusion models. Most of
that literature is not directly relevant to our work, because we are concerned exclusively
with bounded regions. A general overview of the literature on waves is given in [10]
and [28]. Some specific problems related to wavelike propagation in ecological models
and to considerations of domain size are studied in [4]. Another class of models which
have a more direct relation to our work are patch models, where a population is
assumed to inhabit a number of discrete patches rather than a continuous region. Some
topics similar to those we consider are discussed from the viewpoint of patch models
in [26]. (Threshold results for propagation through an infinite number of patches are
derived in [3]; the specific model in [3] arises in neurophysiology, but the same methods
would also apply to ecological models.) Our present work is most closely related to
the ideas discussed in [20], [22], and [27], and of course [6], [9], where the models
are primarily reaction-diffusion equations on bounded spatial domains.

The viewpoint we take in our modeling is essentially that taken in the pioneering
work of Skellam [27], who deduced reaction-diffusion models for population growth
and dispersal from the random-walk problem, and analyzed some of those models via
classical methods. A representative result is that the density u of a population with
linear growth law inhabiting a uniform disc of radius r, surrounded by a completely
inhospitable region can be described by the equation u, = d Au + mu with homogeneous
Dirichlet boundary conditions, and hence will grow rather than decline provided
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m—(dji/ r3)> 0, where j, is the first zero of the Bessel function J;. Another way to
state this result is that the population will grow if the first eigenvalue A; for the problem
—dA¢ = Am¢ on the disc of radius r, with homogeneous Dirichlet conditions satisfies
A, <1. Skellam considered several other models, the most complicated being of the
general form u, =dAu+m(x)u— c(x)u?. Of such models, Skellam wrote (in 1951) that
“orthodox analytical methods appear inadequate.” (See [27, p. 212].) Since that time,
there has been much work on reaction-diffusion models for population dynamics, and
a number of new analytical methods have been introduced. For general background
on the modeling aspects of population dynamics, see [19] or [24]; for mathematical
methods and results, see [9], [10], or [28]. In our previous article [6], we study models
that include those considered by Skellam, and discuss their biological interpretation.
The models in [6] have the form

(1.1) u,=dAu-+f(x,u)u in (), u=0 on 3,

where f is decreasing in u and ) is a bounded domain in R", with n =3 in applications.
The intrinsic local growth rate of the population is given by f(x, 0), which is assumed
to change sign on , with positive values indicating favorable habitat and negative
ones unfavorable habitat. Our results imply that (1.1) has a unique positive steady
state which is a global attractor for nonnegative, nontrivial solutions, provided the first
positive eigenvalue A,(d, f(x,0)) of the problem

—dAd =Af(x,0)¢ in Q, ¢$=0 on s,

satisfies A,(d,}’(x, 0)) < 1. We also examined the question of how A,{d, m(x)) depends
on the arrangement of positive and negative regions for m(x). We showed that for a
sequence {m;(x)} of weights, a necessary and sufficient condition for having

lim A,(d, mj(x))=c0 is that lim sup J Yym; =0
o s o

for any ¢ e L'(Q) with ¢ =0 almost everywhere. (This result is Theorem 3.1 of [6].)
One implication of these results is that if the unfavorable regions are greater than or
equal to the favorable ones in strength and extent, and the two sorts of regions are
too closely interspersed, the population will not persist, even though it might persist if
the favorable habit formed a single larger region. We also showed that in a certain sense,
the most favorable situations will occur if there is a relatively large favorable region
located some distance away from the boundary of €.
In the present article we consider models of the form

(1.2) u,=V-d(x,u)Vu—b-Vu+m(x)u—cu’® in Q, u=0 onaQ,

and attempt to recover some of the results of [6]. Since the analysis of [6] was based
largely on variational methods, we have had to substantially modify our techniques.
In many cases, we replace ideas and results based on variational principles with others
based on monotonicity or positive operator theory. Also, since we assume only m(x) €
L™®(Q) (for various reasons which are discussed in [6]), we must work with weak
solutions, so the standard Hopf maximum principle must generally be replaced by the
maximum and comparison principles for weak solutions of elliptic equations discussed
in [11, Chaps. 8, 9], or the corresponding results for the parabolic case which follow
readily from similar arguments. (We do not always state this explicitly, and in some
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cases we will simply cite references where the Hopf maximum principle is used but
whose results extend directly to our situation via maximum principles for weak
solutions.)

Models such as (1.2) display some different features than those of the form (1.1).
In particular, if d(x, u) is not monotone nondecreasing in u, (1.2) may have multiple
positive solutions. (We give an example in § 3.) It is known that a similar phenomenon
can occur in (1.1) in the' presence of depensation (that is, if f(x, u) is allowed to be
increasing in u for some values of x and/or u) but not in the case of logistic growth.
This situation is not surprising, since the equation V - d(u#)Vu + g(u) =0 can be conver-
ted to the form AU+ G(U) =0 by letting U = D(u) where D(0) =0 and D'(u)=d(u),
and such a change of variables may destroy monotonicity or concavity properties of
g(u).

To analyze (1.2) we observe that the recent work of Hirsch [16] on monotone
flows implies that the dynamics of (1.2) are determined by its steady states, we “unfold”
the steady-state problem by.intfoducing a parameter A multiplying the undifferentiated
terms, and we then analyze the steady states by using A as a bifurcation parameter
and applying the results of Rabinowitz [25]. Our main results state that under suitable
restrictions on d, b, and m, the problem (1.2) has a unique, stable, positive steady state
provided A,(d(x, 0), b(x), m(x)) <1, where A,(d, b, m) is the first positive eigenvalue of

(1.3) -VdV¢+b-Vé=Amp inQ, ¢=0 onaQ,

and give a partial description of how that eigenvalue depends on d, b, and m. In
particular, we show that under a mild coercivity assumption on the left side of (1.3),
the necessary and sufficient condition for A,(d, 0, m;(x}) - as j-> o given in Theorem
3.1 of [6] extends to the case of A,(d(x), b(x), m;(x)). Since environments may vary
in ways best described by discontinuous functions (for example, if a field is crossed
by a paved road with sharp boundaries) we consider the case of m € L™(Q) with m>0
on a set of positive measure, but with m taking both positive and negative values. In
that situation, we have to extend known results somewhat to obtain the existence of
a first positive eigenvalue A,(d, b, m). The analysis is based on work of Hess and Kato
[15] and Hess [14]. Our results on the behavior of A,(d, b, m) overlap slightly with
those of Murray and Sperb [22], who considered the case of A,(1, b, 1). Other results
implying bounds for eigenvalues for A,(d, b, m) under various hypotheses are given
in [12], [13], [15], and [17], but they either do not apply in our situation or do not
appear to be sharp enough for our purposes. We have observed that the presence of
a drift term can either raise or lower A,(d, b, m). Our analysis of the existence problem
for positive steady states of (1.2) is fairly complete, but to obtain uniqueness we must
make additional structure assumptions (specifically that either dd/du =0 or b=0), and
there remain many open questions about the dependence of A,(d, b, m) on d, b, and m.

The paper is structured as follows. We derive the basic existence theory for positive
equilibria in § 2, and obtain conditions on the uniqueness and stability of equilibria
in § 3. Many of the results are somewhat technical, but they have some interesting
biological implications. In § 4 we examine how the eigenvalue A,(d, b, m), whose size
determines whether the model predicts extinction or persistence for the population,
depends on the environment, drift, and diffusion. In § 5 we obtain some population
estimates, again in terms of A,(d, b, m). Since the answers to the questions of greatest
biological interest are determined by the size of A,(d, b, m), we consider the results of
§ 4 to have the greatest applied significance because they relate A,(d, b, m) to the
physical conditions in the model. In § 6 we give a biologically oriented summary of
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our conclusions. We also conclude each section with a description of the biological
interpretation of the main results of that section.

2. A qualitative overview. In this section, we consider the positive steady-state
solutions of the parabolic problem
u, =V - (d(x, u)Vu)—b(x) - Vu+r(m(x)u—cu?) in Qx(0,c0),
2.1) u(x,0)=uy(x)=0 for xeQ,
u(x, t)=0 on 80 X (0, ).
Here, as noted in the Introduction, A is a real parameter and we wish to observe the
structure of said solutions when viewed as a subset of an appropriate function space
via global bifurcation theory [25] as well as determine the stability ;lroperties of the
solution when viewed as solutions to (2.1). We assume that d-e CYQ xR) such that
d(x,s)=d,>0 for all (x,s)eQxR, be[C'(Q)]", and me L®({}) and consider
~V - (d(x, u)Vu)+b(x) - Vu=A(m(x)u—cu®) in Q,
(2.2)
u=10 on 9€).

Observe first of all that (2.2) can be expressed as

b(x) ~d.(x, 0)] v

——Au+[ 4(x0)

Com) [dGw o (s 450\
2.3) ‘Ad(x,O)”J{d(x,u) lvul+<d(x,u) d(x,0)> Vu
1- 1 1 1 Acu’ .
+(d(x,0)‘d<x,u)>("<")‘V“)“(d<x,u)"d(x,m)’"(x)“"d(x,u)] in &,

u=0 on .

Denote the expression in brackets in (2.3) by H(A, u). Then for a sufficiently large p,
H:Rx WgP(Q)-> L"*(Q) is continuous and limy,, o H(A, u)/|lull,,,=0, where
| 1., denotes the norm in Wy”(€)) and the limit is uniform for A contained in compact
intervals. (That such is the case relies on the fact Wg”(Q) embeds into C§(Q) for
sufficiently large p.) Consequently, if L denotes the elliptic operator on the left-hand
side of (2.3) subject to zero Dirichlet boundary data and M/ D denotes multiplication
by m(x)/d(x,0), a solution u to (2.3) is equivalent to a solution u of

(2.4) u=AL"" (%) u+ L7 H(A, u).

Since L7':LP*(Q)-> W>P*(Q)N W§?/*(Q) is continuous, W>P(Q)N W§P*(Q)
embeds compactly into C3**((), 0 < a <1 for p sufficiently large, and C§"*(Q)) embeds
into WyP(Q) for any p, the right-hand side of (2.4) may be viewed as a completely
continuous operator on WgP(Q) for a sufficiently large p  with
limy,y, o [LT'H(, W),/ llull1,,=0 uniformly for A in compact intervals. Con-
sequently, Rx Wy?() is an appropriate space in which to apply global bifurcation
theory [25].

In order to invoke global bifurcation theory to guarantee the existence of a
continuum of positive solutions to (2.2) in Rx Wg?(Q), it suffices to establish that
there is a unique A = A,{m)> 0 such that

: ()
(2.5) v= D v

has as generalized null space the span of a positive function. Note that (2.5) is equivalent
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to
=V - (d(x,0)Vo)+b(x) - Vo=Am(x)v in Q,
v=0 on 3Q).

In the specia_l cases bE.O or me C(Q), the result follows from the results of [21] and

[15], respectively, provided that {x€Q: m(x)>0} has positive measure. In the case

that b% 0 aéldlm € (L™(Q)— C(Q)), to our knowledge, the result does not explicitly

appear in the literature. Since such is the case and since the result is of i

interest, we include a brief proof. ' of independent
» Tueorem 2.1. Suppose that d, b, and m are as described above and that {xe

Q: m(x)>0} has positive measure. Then there is a unique A = A,(m)> 0 such that

w] Yooy M)
d(x,0) ~ T d(x,0)
v=0 . on 3}

has a solution ve C3**(Q) with v(x)>0 in
o N{(I_/\L“l(M/l())))’}:(v)'( ) Q and (9v/9n)(x) <0 on 8. Moreover,
Proof. The uniqueness and simplicity assertions of the theorem follow as in [15]
once the existence of such a A has been established. To this end, let R >0 be such
that m(x)/d(x,0)+R>0 on Q almost everywhere and consider’the operator A, =
)\(OL_-!-R/\)“‘(M/D-FR), which may be viewed as a compact positive operator Aon
Co(£2). A, is continuous in A and consequently so is its spectral radius r(A,) [23]
Moreovgr, lim,_, r(A,)=0. Hence, as in [8], the existence of an eigenvalue,\/\ wit};
thﬁ: re?qulred properties follows from the Krein-Rutman theorem and the maximum
principle as long as there isa A > 0 so that (A, ) = 1. The assumption that {x € Q: m(x)>
0} has positive measure guarantees that (2.7) has infinitely many eigenvalixes with

positive real part [14, Thm. 2]. For any such ei * i
A 4 2 . genvalue A™ and any a
eigenfunction v, Lemma 3 of [15] implies that / » ssoctated

ivl = AReA*[Dl'
Hence r{Ag.,+)=1, and the result is established.

. It is of substantial interest from the biological point of view not only to have the
ex1stel}ce of an unbounded continuum of positive solutions to (2.2) but also to know
there_ is a solution (A, u) on the continuum for all A> A,(m). Such an observation
reqU}re§ m.forrnation in addition to that provided by global bifurcation theory. The
a priori estimates given in the following theorem are sufficient for this purpose..

TueorEM 2.2. Suppose (A, u) is a positive solution to (2.2) and that A €[a, b]
where 0= a=b <co. Then there is a constant K >0 such that ||u|, ,= K. C

Proof. Wf: know that ue W>(Q)N W2"(Q) and consequél;nly ue Cim(Q)
Hence, as in §2 of [6], the maximum principle implies that (])Iuﬂ <
eSS SUPxen (m™(x)/¢). The result then will follow if we can show Vi is boun;ioezi
uniformly with respect to Ae[a, b]. N

To this end, we employ results in §§ 4 and 5 of Chapter 4 and in § 2 of Chapter
6 pf [18]. Equation (2.2) satisfies the ellipticity and structure conditions there im ols)ed
with ellipiticity (and other constants) bounded for Ae[a, b]. Moreover, as I:mted’
0=u(x)=esssup..s (m*(x)/c). By the proof of Theorem 4.1 of [18 ’Chap 4]’
€ss supq Vu| can then be bounded in terms of ess sup,q |Vu| and integra]’s whicI; aré
in essence flull22 and [lu]l74. Theorem 5.1 of [18, Chap. 4] implies that these last
mtegra‘ls are bounded in terms of |u|, and constants depending on Q and the
coefficients of (2.2), all of which are uniformly bounded for A e [a, b].

(2.6)

-AU-F[ v in Q,

(2.7)
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In order to see that ess sup,a |Vu| is uniformly bounded with respect to A €[a, b],
we employ Lemma 4.1 of [18, Chap. 4] or Lemma 2.1 of [18, Chap. 6]. (These are
two statements of the same result.) The idea behind the lemmas is Bernstein’s, namely,
to compare u with an appropriate auxiliary function via differential inequalities and
the maximum principle to obtain bounds on du/dn on subsets of 3. In [18], the
classical maximum principle is used, and u is assumed to have classical second
derivatives throughout (). However, we may replace the classical maximum principle
with the maximum principle for weak solutions as stated in Chapter 8 of [11] and
only require that ue W>?(Q)N Wy”(Q). The bound we obtain depends only on Q,
|||, and ellipticity and structure constants which are bounded as long as | u]l. and
A are uniformly bounded so the result follows.

Consequently, there is an unbounded continuum % in Rx W§P(Q) of positive
solutions to (2.2) with the property thatif (A, u)e €and A€ [a, b], where 0= a <b <,
there is a K > 0 such that [ju], ,= K. Furthermore, it is evident that (2.2) has only the
trivial solution when A =0. Hence, the projection II(%) into R of € must satisfy
(A,(m), 00) = TI(¥) < (0, ). In particular, there is at least one positive solution of (2.2)
for every A> A (m).

For any fixed A, (A, u) € € of course implies that u is an equilibrium solution to
(2.1). It is sometimes possible to determine that u is globally asymptotically stable
with respect to smooth initial data uy(x) = 0. We first observe that if A> A(m), then
the zero solution of (2.2) is unstable. To this end, observe that the linearization A of
~V - (d(x, u)Vu)+b(x) - Vu—A(m(x)u—cu®) with respect to u at u=0 is given by
A(p)=-V - (d(x,0)Vp)+b(x) -V —Am(x)¢ and that the zero solution is unstable
provided that

Ap=0c¢ inf),
¢=0 on 3Q),

and ¢(x)>0 in Q implies that o <0. If =0, then v= ¢ is a positive solution to the
inhomogeneous boundary value problem

—V - (d(x,0)V0)+b(x) - Vo=Am(x)v+h inQ,
v=0 on 4},

where h = o¢ =0. As A> A,(m), Proposition 3 of [15] is violated. As a consequence,
the zero solution of (2.2) is unstable as an equilibrium to (2.1) if A> A,(m), and we
are able to establish the following theorem.

THEOREM 2.3. Suppose that for some A> A,(m), there is a unique positive solution
i to (2.2). Then i is a globally asymptotically stable equilibrium for (2.1) provided we
require the initial data u, to lie in an appropriate Sobolev-Slobedickii space Wg'*. This
will be the case if uge Cg({1), for example.

Proof. The methods of Amann [1], [2] imply that (2.1) generates a monotone flow
on a Sobolev-Slobedickii space WP(Q) with W§?(Q)< W>7(Q)N wir(Q) < CH).
(See also [16, Thm. 4.6]. We assume slightly less regularity than Amann since m(x) €
L®(Q), but a comparison principle for weak solutions to quasilinear parabolic problems
can be readily obtained by modifying the proof of Theorem 9.5 of [11] to treat the
parabolic case, so this is not a problem.) Consequently, the results of [16] are applicable
‘0 this situation. Since the zero solution of (2.2) is an unstable equilibrium and since
[0, @] is an order interval containing no other equilibria, Theorem 0.6 of [16] implies
that if 0= ip(x) = ii(x) and ue(x) # 0, then the solution u(x, t) of (2.1) corresponding
to ue(x) converges to @(x) as t- 0, uniformly on Q. Moreover, for any sufficiently
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large constant K, Theorem 0.7 of [16] implies that the solution uk(x, t) of (2.1)
corresponding to initial condition K converges to ii(x) as t - oo, uniformly on . The
result now follows from monotonicity, since for any smooth initial data v(x)> 0 and
v# 0, we can find uy(x)€[0, ii] and K sufficiently large so that uy(x)=v(x)= K. We
conclude this section with the following result, which is a corollary to Theorems 2.1-2.3.

TueoremM 2.4. Consider equation (2.6) and let A,(d, b, m) be as in Theorem 2.1.
If A,(d, b, m) <1, then the problem (2.1) with A=1 has a positive equilibrium solution
ii. If i is unique, then it is globally asymptotically stable with respect to smooth initial
data uy(x).

2.1. Bielogical interpretation. The primary result of biological interest in this
section is Theorem 2.4. That result asserts that there exists a positive equilibrium
density for the population being modeled provided that the eigenvalue A,(d, b, m) is
less than 1. The significance of the result lies in the fact that A,(d, b, m) depends
directly on the terms in the medel describing biological properties of the population
and the environment. Thus Theorem 2.4 provides a criterion for the possible persistence
of a population in terms of diffusion, drift, and growth rates which vary with location.
In some simple cases it is possible to compute A,(d, b, m) as the solution of an equation
involving trigonometric and hyperbolic functions (which can be approximated by
Newton’s method). This is discussed in [7]; an example is given below.

In general, the numerical problem of finding A,{(d, b, m) is fairly difficult but has
been studied extensively. Approximation schemes for the case b=0 (no drift) are
discussed in detail in [29]. There is a substantial literature on numerical approximation
for solutions of eigenvalue problems with or without drift terms; [29] gives a large
number of references. It is not surprising that the computation of the eigenvalue A,
may be complicated, since if A, gives a reasonable synthesis of the various factors such
as the size, shape, and quality of the environment and the effects of winds, currents,
temperature or chemical gradients, it must reflect a large number of complex biological
factors. In giving an accurate description of a complex phenomenon, a certain amount
of mathematical sophistication may be required. Even so, the computational problem
of finding A,(d, b, m) is likely to be simpler than that of evaluating the results of a
comparably detailed simulation.

A major advantage of having a criterion for persistence based on A,(d, b, m) is
that it is possible to make a number of qualitative statements about the ways in which
changes in the environment affect a population. That is the main theme of [6] and [7]
and of § 4 of this article. We discuss the topic at some length in § 4.

As an example, suppose that we consider a one-dimensional region Q= (0, £),
with no drift, constant diffusion rate, and a growth rate m(x) which is a positive
constant on a subinterval of ) and a negative constant on the remainder of Q. For
appropriate d, this problem can easily be rescaled into the form

u'+m(x)u—cu’>=0 on (0,1),

u(0)=u(1)=0

-1, 0<x<a,
(2.9) m(x) =<k, a<x<a+T,
-1, at+T<x<1,

for some T <1 describing the relative size of the favorable region, some a€[0,1— T
describing its location relative to the boundary, and some k describing the relative
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quality of the favorable habitat compared with the unfavorable. (The diffusion
coefficient is scaled into m(x); the carrying capacity relative to habitat quality is
described by ¢ but does not directly enter the computation of A;.) We show in [7] that
for (2.8), (2.9), we have A, = a” where «a is the smallest positive solution of

ktanh[a(l—a—T)]tanh ea—1
vk [tanh ea+tanh a(1—a—T)]

Note that for a uniformly favorable environment we have A, = &= 7>/ k so that
we can expect persistence only for k> =% For k=16, T=1, a=0 (indicating a
uniformly favorable environment), we have A,~.61. For k=16, a=.1, T=.8 we find
by solving (2.10) that A,=.63. For k=16, a=.3, T=.4, A,=.86. The results of [7]
show how in (2.8) a number of other forms of m(x) can be treated via equations
similar to (2.10).

3. Uniqueness. In this section we shall consider the question of uniqueness for
positive steady states in our model. Our analysis includes some results on the direction
of bifurcation with respect to the unfolding parameter A, and on the linearized stability
of the steady state. We begin with an example that shows that some restrictions are
needed if uniqueness is to hold. In the general semilinear problem Au+ f(x, u)=0,
some conditions must be imposed on f to obtain uniqueness, and the problem
V.-d(u)Vu+m(x)u—cu’=0 is equivalent to the semilinear problem AU+
m(x)D"H(U)—c[D™(U)*=0 where U= D(u) with D'(s)=d(s), D(0)=0; so we
must expect that some conditions will be needed on d(s) if the corresponding semilinear
problem is to have a unique solution. The nature of those conditions is indicated by
the problem °

(3.1) (d(u)u') +r(u—u?)=0, u>0 on (0, 7), u(0)=u(mx)=0,

where d(s)=1~2dos for 0=s=dy/4, d(s) is smooth for 0=5 <00, and d(s)=d,>0.
By the analysis in § 2, a branch of positive solutions to (3.1) bifurcates from the trivial
solution at A = 1. If we multiply the equation in (3.1) by u, integrate by parts, and use
the fact that

(2.10) cot avk T=

J-ﬁ u'(x)Ydxz J‘w u(x)? dx,

[} 0

then we obtain the relation

d, J u?dx=d, J (u')? dxéj d(u)(u') dx= 2 J u?dx—\ ‘[ u’® dx.
0 0 0 (4 0

Since u> 0 on (0, ), it follows that A = d, > 0. Also, 0 <u <1 on (0, ) by the maximum
principle, so a standard application of the Rabinowitz global bifurcation theorem
implies that the branch of positive solutions emanating from the zero solution at A =1
must meet infinity in A. However, if we multiply (3.1) by sin x and integrate by parts,
then as long as 0= u = dy/4 (which will be true locally near the bifurcation point) we
have

)\J‘“usinxdx—)\J‘ uzsinxdx=-J. (d(u)u") sin x dx

0 0 0

= —J u"sin x dx + -[ (2douu’) sin x dx
0 (¢}

=J usinxdx—J dou’ sin x dx.
[

0
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Hence, as long as 0 <u =d,/4, we have

)\J (u—zlz)sinxdx:‘J (u——uz)sinxdx—l—(l—do)f u? sin x dx,

0 o ]

so if dy> 1, we must have A <1. But the branch of solutions must meet infinity in A,
so there must be a solution with sup u > d,/4 corresponding to A = 1. It follows from
the fact that the branch of positive solutions is a continuum and the leftward direction
of bifurcation that for some £ >0, the problem (3.1) has at least two solutions, one
with sup u = dy/4 and one with sup u>dy/4, for A=1—=¢.

To avoid the phenomenon observed in this example, we must ensure that the
bifurcation is to the right rather than to the left. If we have A> A,(d(x, 0), b, m) for
all positive solutions and they are all linearly stable, that is enough for uniqueness.

THEOREM 3.1. Assume that d(x, u) is of class C'. Suppose that for any solution of

Vd(x, u)Vu—b(x) - Vu+r(m(x)u—cu?)=0 in Q,
(3.2) u=0 on 80,
A>0, u>0 in ,

we have A> X,(d(x,0), b, m), and that the first eigenvalue of the linearized problem

~V - d(x, u)Ve—V - d,iM

Vu+b-Ve+ —m)p= j
(3.3) P u+b-Veo+aQ2cu m)q? o in (),

é =0 on 98}

satisfies o, >0 for any positive solution u. Then the positive solution for (3.2) is unique
for any given A. _

Remarks. Combined with the comparison principle for the corresponding para-
bolic problem and the results of Hirsch [16], uniqueness implies stability. The condition
o, >0 already implies linearized (and hence local) stability.

Proof. Choose p>1 large enough that W>?(Q)N Wy?(Q) embeds in C5™*(Q)
and W""/(Q) embeds in C?(Q) for some «, B €(0,1). Then the nonlinear function
F(A u)=V-d(x, u)Vu—b(x) - Vu+A(m(x)u— cu®) maps Rx (W>?(Q) N Wy?(Q)) ~
L"(€)). The map is continuously differentiable, and the derivative with respect to the
second variable is the negative of the operator on the left side of (3.3). If o;,>0 in
(3.3), then the linearized operator is invertible from L? to W>? W}’ by standard
elliptic theory. Thus, if (Ag, up) satisfies F(A, u)=0 and uy>0 in Q, then there is a
bounded neighborhood U of u, in W>?N W{”, an interval A= (Ao— 8, Ag+8) with
8>0, and a function g:A- U such that for any A € A, the unique solution in U of
(3.2) is u=g(A). Let A, T Ao+ 8 as k—co. By (3.2), we have for u, = g(A,)

(3.4) we=—AT'[(Vd(x, u) - Vu—b - Vi + A (muy, — cuz))/ d(x, )]

- -1
=-—A Wi

Since U is bounded in W>” (1 Wy”, so is U, thus the right side of (3.4) is of the form
—A""w,, where {w,} is uniformly bounded in W"”/2, (Here the p/2 is due to the
presence on the right side of (3.4) of terms of the form (ad/du)|Vu|?; also, we have
used the fact that d = d, > 0, the embedding W>? N W§¥ <> C3**, and the differentiabil-
ity of d.) Our choice of p is such that W""/?<> C?, so since C® embeds compactly in
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C°, we may choose a subsequence and reindex so that {w,} converges in C°, and
hence in L. Then (3.4) implies that the sequence {u,} converges in W>” N Wg'”, thus
producing a nonnegative solution to (3.2) at A = A,+ 8. A similar argument applies at
A =Ao— 8. For these values of A, the solution can be extended further if it is positive.
However, if we choose K >0 sufficiently large we have from (3.2) that

=V d(x,u)Vu+b(x) - Vu+Ku=[Am(x)—Acu+Klu=0,

so if uz0 and u=0 somewhere in (), then u =0 almost everywhere by the strong
maximum principle for weak solutions (see [11, Thm. 8.19]). Hence, the only way that
continuation in A can fail is if A is a bifurcation point from the branch of trivial
solutions. The unique point where positive solutions can bifurcate from that branch
is A= A,{d(x,0), b, m). It follows that if (3.2) has a positive solution u, for some A,
then there is a curve (A, u{A)) of positive solutions passing through (Ao, #,) which can
be extended at least until A=A,{d(x,0),b, m). Suppose that for some A,>
A,(d(x,0), b, m) there are two distinct positive solutions of (3.2). Then each lies on
an arc which extends until A =A,(d(x, 0), b, m), and the arcs cannot intersect as long
as the solutions to (3.2) remain positive. If an arc contains a positive solution to (3.2)
at A=A,(d(x, 0), b, m), then the preceding argument based on the implicit function
theorem implies that there are positive solutions of (3.2) on A€ (A,~ 6, A,), for some
8> 0, contradicting our hypotheses. But both branches cannot connect to the zero
solution at the point A = A,(d(x, 0}, b, m), since the Crandall-Rabinowitz constructive
bifurcation theorem for simple eigenvalues implies that there is a unique branch of
positive solutions in some neighborhood of the bifurcation point. Hence, assuming
the existence-of two distinct positive solutions for some A yields a contradiction, so
for any A the positive solution of (3.2) must be unique.

Remark. A similar argument is used to obtain a uniqueness theorem for a diffusive
Lotka-Volterra competition model in [5].

So far, we have been unable to establish that the hypotheses of Theorem 3.1 are
satisfied, in general, for equations of the form (3.2). However, we can show that they
will be met if the differential operator in (3.2) is either linear or in divergence form.
The two cases require different arguments, so we consider them separately.

CoROLLARY 3.2. Suppose that b=0 and ad(x, u)/ouz=0 for all xeQ and ue
[0, esssup (m™/c)]. Then (3.2) has a unique positive solution for A> A,(d(x,0), 0, m).

Proof. Suppose that (3.2) has a positive solution for some A > 0. Multiplying by
u, integrating by parts, and using the hypothesis that d(x, u) is monotone increasing
in u, we have

0<J d(x,0)|Vul? dx<J d(x, w)|Vul*+ Ac J' udx=A J m(x)u? dx.
a a a a
Since [, mu® dx >0, it follows from results in [16] that
J d(x, 0)|Vu]’ dx= A,(d(x,0),0, m) J m(x)u® dx,
Q a
so that

A(d(x,0),0, m) J mu® dx <A J‘ mu? dx
I3} a
and
/\l(d(x: O)s 0: m)<A9

as required.
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Suppose that ¢,>0 is an eigenfunction for (3.3) corresponding to the principal
eigenvalue ;. Multiplying (3.3) by uv and integrating by parts yields

ad(x, u)
du

o, J ud, dx=J ':-—V - d(x, u)Vu+ |Vu|2+2)\cu2-)\mu] ¢, dx,
(¢} 9]

so by (3.2) we have
‘ ad , ,
o, J ueg, dx=J [_(x_,uz iVu|‘+)\cu‘:] ¢, dx>0
a a du

and hence o, >0 as required.

COROLLARY 3.3. Suppose that d(x, u)=d(x,0), so that (3.2) is semilinear. Then
(3.2) has a unique positive solution for A > A,(d(x, 0), b, m).

Proof. Suppose that (3.2) has a positive solution for some A >0. Then we have

=V - d(%,0)Vu+b(x) - Vu=A(m(x)—cu)uy,
where u>0in Q and u =0 on 8}, so that
A=x,(d(x,0),b,m—cu)>Ar,{d(x,0),b, m)

by the monotonicity of the positive principal eigenvalue with respect to the weight
(see [11]). In this case, (3.2) can be written as

(3.5) ~V - d(x,0)Vu+b- - Vu+AQ2cu—m)u=2Arcu>0.

Since (3.5) admits a positive solution u for the positive inhomogeneous term Acu,
it follows that the principal eigenvalue for the operator Lp=—-V -d(x,0)Veo+
b-V¢+A(2cu—m)¢p must be positive. Since ad(x, u)/du =0, that eigenvalue is o,
so o,>0.

Remark. 1t would be of interest to find a natural set of conditions including those
of both corollaries under which the hypotheses of Theorem 3.1 are satisfied. So far we
have been unable to find such general conditions. It is well known that results for
quasilinear problems not in divergence form are typically much weaker and/or more
difficult than for either linear or divergence form problems (see the discussion in [7]
and [14]). There are numerous open questions about uniqueness even in the case of
ordinary differential equations.

3.1. Biological interpretation. The results of this section serve largely to sharpen
those of the previous section by giving criteria for the uniqueness of the positive steady
state for the population. Uniqueness is important in the context of our models because
it implies the global stability of the positive steady state and thus the persistence of
the population. Perhaps the most interesting observation from a biological viewpoint
is that uniqueness may fail if the rate of diffusion is allowed to decrease with respect
to the population density. Such a phenomenon occurs when the diffusion rate is
constant but the logistic growth term is replaced by something of the form uf(x, u)
with f(x, u) sometimes increasing with u; in other words, in the presence of depensation
in the growth rate. That observation is made in [20] in connection with a model for
the population dynamics of the spruce budworm. As far as we know, it has not been
observed previously that the same sort of effect can be induced by density dependent
diffusion, which can sometimes produce multiple steady states even with a simple
logistic growth term. In the absence of drift, we show that such an effect can only
occur if the diffusion rate decreases relative to the population density at some densities.
We have not been able to determine the effects of drift terms on this phenomenon. In
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the case of a density independent diffusion rate, we show that a positive steady state
is unique and stable if it exists, and similarly for models with no drift and a diffusion
rate which increases with population density.

4. Properties of the principal eigenvalue. We have seen that under fairly general
hypotheses, the condition A,(d(x, 0), b(x), m(x)) <1 is sufficient for the existence of
a positive steady state for our model, and under somewhat stronger hypotheses the
condition is also necessary and the positive steady state is unique and hence stable.
Thus, it is natural to ask how A,{(d(x, 0), b(x), m(x)) depends on d, b, and m. Some
results for the case d(x, 0)=1, m{x)=1 are given in [21], and for the case d(x,0)=1
and b=0 in [6].

Our first result is an extension of Theorem 3.1 of [6].

THEOREM 4.1. Suppose that d(x)=d(x,0)e C'"*(Q)), b(x)=(by,- -+, b,) with
bi(x)e C*(Q) fori=1,- -, n, and my(x)e L*(Q) forj=1,2,- - - . Suppose that d and
b are such that for any ¢ € W5*(Q) we have '

1) J AIVSP+(b- V)b = dy J VoL

Jfor some dy> 0, and for each j,
(4.2) Imllo=m, and m;>0 on a set of positive measure.

To have lim; o A,(d, b, m;) =0, it is necessary and sufficient that

(4.3) - lim sup J mpB=0
i~ Ja
for all B e L'(Q) with B =0 almost everywhere.

Proof. Suppose that (4.1), (4.2), and (4.3) hold but A,(d, b, m;) 4 c© as j—>c0. We
may then choose a subsequence {A,(d, b, m,)} which is bounded. Let ¢, be the positive
eigenfunction corresponding to A,(d, b, m;.) and normalized so that |, |V¢,|*=1. Then
the sequence {¢;} is uniformly bounded in W§?(Q), and since Wg*(Q) embeds
compactly in L*(Q2), we may choose a subsequence {¢,} which converges in L*(Q) to
some function ¢. We have

do=d, J Vo= L d(x)[Ve[*+ db(x) - Ve,
O
(44) = )\l(da bs ml) J‘ mlqb?
O

=A,(d, b, m,)(f m,(¢%—¢2)+J m,¢2).
[e] [e]

Letting [-> oo, the first integral in the last formula goes to zero since ||m;||=m, and
¢~ ¢ in L*(Q); the second goes to zero by (4.3). Since {A,(d, b, m;)} is bounded, this
implies d,=0, which is a contradiction, so we must have A,(d, b, m;)->c0.

To show that our hypotheses are necessary as well as sufficient, we use a device
due to Holland [17] in a form similar to that used by Hess [13] in the context of
periodic-parabolic problems. (In fact, this device provides a method for estimating the
size of A,(d, b, m) from above for fixed d, b, and m, but we shall not pursue this.)
Consider the problem

(4.5) ~Vd(x)Vi+b - Vi—rmy=pyf in Q, =0 on 3,
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where me L™(Q)) and m>0 on a set of positive measure. The first eigenvalue p,{A)

admits an eigenfunction with ¢ >0 on Q. Let 8 =—In ¢; then 6 is defined on  and
satisfies

(4.6) dAO—d|VO|P—(b—Vd)-VO—Am=pu,(A).

Suppose that ¢ € C3(Q) satisfies [, m¢p*>0 and [, ¢>=1. (We will return to the
question of deciding if such functions exist later.) Multiplying (4.6) by ¢ and using
the divergence theorem, we have

(4.7)J v-dqszvo—J [d¢2|V6|2+2d¢V¢>-V9+qb2b-V0]—/\J me> =, (A).
Q Q O

Another application of the divergence theorem shows that the first term in (4.7) is
zero. Adding the quantity

f d|pVo+[pb+2dV¢]/2d[*= 0
Q

to the left side of (4.7) and rearranging terms, we have

(4.8) J [l¢b+2dV e[ /4d]— A J me¢>= p,(A).

If we let

A=A, m)EJ [|¢b+2dV¢|2/4d]/J me?,
Q e}

then (4.8) implies u,(A) =0; but since ¢ > 0, it then follows from (4.5) and the positivity
lemma of [15] that A,(d, b, m) = A(¢, m). Now suppose that lim SUDj e [ mif =¢gy>0
for some B e L'(Q) with =0 almost everywhere. Then we can take a subsequence
{m} so that |, m8 = £,/2, and we can approximate v as closely as we wish in L*()
with a function ¢ € Cg(€Q). If we choose ¢ so that [, |8 — ¢ = eo/4m,, we obtain
Imk¢2§ £0/4> 0. It follows that for such ¢ the denominator of A(¢, my) is uniformly
bounded away from zero, and since the numerator is independent of m, we have
Ai(d, b, m) = Ay<o for some A, and all m, in the subsequence. Hence we cannot
have lim;_,o A,(d, b, m;) =0 if (4.3) does not hold.

Remarks. If we consider a set of weights {m;} with Imjé m,>0 for all j, then
(4.3) fails for B =1, so the corresponding set of principal eigenvalues A,(d, b, m;) must
be bounded, since otherwise we could find a sequence m, with A(d, b, m;)>coas [->co,
There are various conditions on d and b under which (4.1) must hold. For example,
if we assume d Zd,>0 and |b| = b,, then we have for any £>0

J (b'V¢)¢,§f (e(b-V¢)2/2)+(¢2/28)g[(sb3/2)+(1/2e/\0)]J IVol®
[¢) Q Q

where Ag=A,(1,0,1). If we minimize with respect to &, we obtain Uf, (b-Vo)op|=
bo/v/ X, so that (4.1) is satisfied if d,> bo/vX,. If we assume be[C'(Q)]", we have

| ovor=1[ vvwr=-1[ @-me

If V-b=b, and d = d, >0, then (4.1) must hold provided d,> b,/2A,.
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Next we consider the problem of how b affects A,(d, b, m). For the case where
d=1, m=1, and b=~VB, Be C*(Q}), Murray and Sperb [22] showed that if y,, y»
are such that y, S3AB+3VB]*= v,, then

(4.9) MO, D+y,=2(1,b,1)=1,(1,0, 1)+ vs.

They also showed that if Q < R? is convex, the matrix ((3b;/ dx;)) is positive semidefinite
in Q, w =max,q b, (A, ©) = w((A+©?)"*+w), and p is the radius of the largest disc
contained in Q, then A,(1, b, 1) is greater than or equal to the first positive root A of
a(A, ©)/(A+a(A, w))=cos (pVAX).

Inequality (4.9) is obtained via a change of variables. If we have b(x)/d(x)=—-VB
for some B, we can make the corresponding change of variables; letting ¢ = e%/%¢
converts the problem —~V - dV¢+b- V¢ =Ame to

(4.10) ~V - dVy+[(V-dVB/2)+(d|VB]*/4)]d = rAmi,

while preserving the homogeneous Dirichlet boundary condition. If A= A,(d, b, m)
then since ¢ =e?%2¢>0, A is also the first eigenvalue for (4.10), which has the
variational characterization (see [21])

. Ja [d|VyP+y¢°]
4.11 A= inf 3 )
( ) ve Wi Q) jg myr”
Jnu,b2>0

where y=[(V - dVB/2)+(d|VB|*/4)]. In the special case d =1, m=1, (4.11) implies
the bound (4.9). In general, if b satisfies b=—dV B, with B such that y=0, then we
may conclude A,(d,b, m)=A,(d,0, m), and if y=0, A,(d,b, m)=A,(d, 0, m). Since m
is indefinite, it is not clear how to obtain bounds analogous to (4.9).

In the case where b is not a gradient, we can still obtain some information if
be[C'(Q)]". If we multiply the equation =V - dV¢+b -V =A,m¢ by ¢, integrate
by parts, and use the boundary condition, we obtain

(4.12) J [d[Ve[]— (V- b/2)d*]=1, L me?.

If condition (4.1) is satisfied (which will clearly be the case if V - b=0) then we have
IQ m¢>> 0, so that we may again use the variational formulation of [21] to see that if
V- -b=0, then

d|V¢P—(V - b/2)y?
Al(d,b,m)é inf IQ[ ' l/" ( 5 /)'1[/]
ve whia) Jo my
Inm({/2>0
d|vy|?
= lnf IQ l l’bp_l =)\l(d903 m)
pewbiay [o my
Inlrzzb2>0

We have thus proved the following result.

THEOREM 4.2. Suppose that either be[C'(Q))]" and V - b=0, or that b=~dVB
for some Be C*Q) such that y=[(V-dVB/2)+(d|VB|*/4)1=0. Then A,(d, b, m)=
A(d, 0, m).

Theorem 4.2 generalizes a result of [22] which implies that adding a constant drift
term to the Laplacian always raises the principal eigenvalue. It can be shown via a
perturbation argument that if be [C'(Q)]" with V- b>0, then for &> 0 sufficiently
small, A,(1, b, m)=A,(1, 0, m). The general question of deciding how A,(d,,b,, m;)
and A,(d,, b, m,) are related is to our knowledge an open problem.
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THEOREM 4.3. Suppose that d=d,>0 and that be[C'(0)]" with V-b=0. Let
M(x) be any solution to

(4.13) V-dVM+b-VM+(V-b)M=m.

Suppose M, = supgq M and M, = ess supg (—Mm). If Mo =0, then A,(d, b, m)Z1/2M,.
If M,>0, then

—2M,+[4M3+(8M>/d A, (1,0, 1)1

A,(d, b, m)= (4M,/d,7,(1,0,1))

Remarks. Observe that no boundary condition is imposed on M in (4.13). Since
V - b=0, there will exist a solution for any reasonable boundary data.
Proof. Suppose ¢ satisfies

~V-dV¢+b-Vo=A(db, m)mé inQ,
(4.14) -

=0 on 3.

Then we have via integration by parts
O=I M(V - dV¢?)—¢*(V-dVM).
Q

Since
V-dV¢p>=24V - dVe+2d|Ve|
=2¢b -V —2\,m¢p>+2d|Ve|

and
J 2M¢(b-V¢)=J Mb-v¢2=——J ¢ (VM -b+MV - b],
0 0 0
it follows that
(4.15) 0=2J Md|V¢[2——J ¢2[V-dVM+b-VM+(V~b)M]—2/\,J Mma>.
[¢] [e3 ie3
From (4.14) it follows that

Ay J m¢2=J [dIVe[*+(b-V)e]
Q 0

= L [dIVé[*~(V - b/2)$*]>0,

and we may assume that ¢ is normalized so that A, j'ﬂ m¢>=1. By (4.13) we may
replace the middle term in (4.15) by —IQ me?; if we then rearrange terms and multiply
by A,, we obtain

(4.16) 1=A1J mqsz———mm%J Mm¢2+2/\lj Md|V o[
L¢) ¢ s}
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Since

V-b=0, O<J d}qulzg)\lJ me2=1;
Q Q

also,

2 1 el
Ts——— | d|Ve|.
Jﬂ¢ Al(laoa l)dl Jﬂ | ¢|

If we estimate the two integrals on the right of (4.16), we obtain

J d[V¢|2§1§2M2)\§J ¢2+2M1A1J divel.
0 Q Q

If M,=0, we have 1=2M,A,. If M,>0, then we have
1=(2M,/A1(1,0,1)d)AT+2MA,.

The bounds on A, follow immediately.
Example. Let Q=(0, ), d=1, b=b,, and M =sin nx. Then (4.13) becomes
M"+bM’ =sin nx, which has a solution

M = —[by/n(n*+ b3)] cos nx—[1/(n’+ b3)] sin nx.
We may use M, = 1/n(n*+ b3)"/? and M, = (n+ by)/ n(n*+ b3). Theorem 4.3 then yields

[:—(nl+ bg)‘/2+( n’+b;  2n(n’+ bﬁ)) ‘/2}
n+bg (n+be)? n+ b, ’

1
4.17) A:(1, by, sin nx)zi

which implies that A,(1, by, sin nx) - co with order n as n- o0 and with order Vb, as
by c0.

4.1. Biological interpretation. While the results of this section are technical in
appearance in the sense that they represent extensions of existing results, they are
potentially the most relevant for studying the effects of environmental factors on
population dynamics. In previous sections we established that the size of the eigenvalue
A1(d, b, m) gives a criterion for persistence, namely, A,(d, b, m) <1, so that A,(d, b, m)
serves as a reasonable measure of the overall suitability of an environment. In the next
section we shall strengthen the case for using A, as such a measure by deriving a
population estimate in terms of A,. The results of this section give some information
on how A,(d b, m) is affected by the aspects of the environment described by the
diffusion rate, drift, and local growth rate. Thus, they provide a means of using our
models to infer the likely effects of certain environmental changes. The first two major
results are qualitative, in that they describe the general behavior of A; when the
environment is perturbed in certain ways. The third is quantitative and allows a
comparison of the relative impact of different effects, at least in simple cases. Our
biological conclusions are somewhat tentative because of the enormous complexity of
the problems they address, but they provide a starting point and direction for further
work. We undertake a much more detailed analysis of some specific situations in [7].

Theorem 4.1 is a generalization of a result in [6]. Its main significance, we believe,
is that it allows us to gain some insight into the effects of habitat fragmentation via
reaction-diffusion models. The problem of understanding habitat fragmentation on
populations is one of the most important topics in conservation biology. The theory
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of island biogeography has been used to a considerable extent in the theoretical work
on this problem, and it generally suggests that a few large regions of favorable habitat
can be expected to sustain more species than a great many very small regions of the
same total area. Theorem 4.1 allows us to consider the question at the species level
rather than the community level, but leads to conclusions which are similar in spirit.
Specifically, if we consider an environment in which the average habitat quality (as
measured by the integral of the growth rate m(x)) is zero and vary the spatial distribution
of favorable habitat so that it becomes more and more fragmented and more closely
interspersed with unfavorable regions, then A, will eventually tend to infinity so that
our model predicts extinction.

As a simple example, if we consider a one-dimensional environment with fixed
diffusion and drift coefficients and take m;(x) =sin (jx), then A,(d, b, sin (jx))—»> 0 as
j->c0. Whenever j is large enough that A,(d, b, sin (jx))> 1, the population cannot be
expected to persist. It is important to keep in mind the asymptotic nature of this result;
some of our work in [7] indicates that under certain conditions a few medium-sized
favorable regions may provide a more suitable overall environment than a single large
one. In some cases, we can obtain more precise quantitative information from Theorem
4.3. We have given an example immediately prior to this discussion. For more details
on the connections between our work, island biogeography theory, and conservation
biology, along with some references, see [6].

Theorem 4.2 gives some information on the effects of drift on the population. It
is well known that (in the presence of a hostile exterior) increasing the diffusion rate
tends to cause a more rapid loss of population across the boundary of the environment.
Under certain conditions the effects of drift can produce the same results, and the
theorem described some of those conditions. The case of constant growth and diffusion
rates was treated by Murray and Sperb [22], and our results can be viewed as an
extension of theirs to the case of variable diffusion. In realistic models we should
expect V - b to change sign unless b is constant, since otherwise the drift term itself
acts as a source or a sink. The condition b=—dVB with B satisfying (V- dVB/2)+
(d|V B|*/4) = 0 says roughly that the drift acts to augment the effects of diffusion. This
condition can be checked via standard techniques from vector calculus. It was shown
in [22] that for constant diffusion and growth rates, constant drift always makes the
environment less suitable for the population under the assumption of a hostile exterior.
Our results show that the same conclusion holds in the case of variable growth and
diffusion rates. In both situations, the effect is due essentially to the drift pushing the
population toward the hostile exterior region in one direction, while contributing no
inward flux from the other since there will be no population in the hostile exterior region.

The qualitative results of Theorems 4.1 and 4.2 are augmented by the quantitative
bounds on A, given by Theorem 4.3. The example following the proof of that theorem

shows how it can be used to draw conclusions about the persistence of a population

from data on the diffusion, drift, and growth coefficients in a specific case. If the lower
bound given in (4.17) is larger than 1, our model predicts extinction for the population.
Other situations could be treated in a similar way. Of course, more complicated
situations will require more effort in the analysis, but the estimate is based on the
well-developed theory of linear differential equations. The specific bound (4.17) is
already of some interest biologically since it gives an indication of the relative sig-
nificance of drift and environmental heterogeneity. If we consider a one-dimensional
environment, the estimate increases with the same order as the number of fragments
of equal size into which the regions of favorable and unfavorable habitat are divided.
It increases with the order of the square root of the coefficient describing the drift.
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5. ‘ Population estimates. In the situations covered by Corollary 3.2 (density depen-
dent diffusion in divergence form) and Corollary 3.3 (density independent diffusion
not necessarily in divergence form), we are able to estimate the total size I udx of
t}_le positive steady states to (2.1) in a manner analogous to that in Theorem 45.11 of [6].
Since the results for these two cases are different from each other, we include them in

this paper for the sake of completeness. We begin with the case of density independent
diffusion.

THEOREM 5.1. Suppose that u is the positive solution to

(5.1) —V - (d(x)V) +b(x) - Vu=Alm(x)u—u?] in Q,

u=0 on 3Q)

u-)here A>A(db, m~). Suppose that the differential operator satisfies the coercivity condi-
tion (4.1) and that A>0 is the principal eigenvalue for

—doAz=pumz in Q,
z=0 on 3.
Then X=A,(d, b, m) and

AT
Fao= (1) im0~

Proof. Suppose that w>0 on () and satisfies
=V (d{x)Vw)+b(x) - Vw=A,(d b, m)m(x)w in Q,

w=0 on 8{).
Then

A (d, b, m) J m(x)w2=J w(=V - (d(x)Vw)+b(x) -Vw)édoj [Vw|.
a Q . Q

Consequently, [o m(x)w*>0and do [, VW= [, m(x)w? by the variational charac-
terization of A [21]. Hence A = A,(d, b, m). Multiplying (5.1) by u and integrating gives

J u3=J m(x)uz—J u [“V : (d(x)v/l\l)‘l'b(x) . Vu]

» d 5
= J m(x)u®—=2 J vul?
0 A O

é(l -—%) J;l m(x)u?,

since [, m(x)u’>0 by (4.1). Since [, mu’=[, m?=|m.|s]u|? and [u],=
[|2]15|12, the result follows.

Two comments are in order at this point. The first is that the reader will recall
that § 4 contains a discussion of conditions under which the coercivity condition (4.1)
obtains. The second is that Theorem 5.1 does not provide an estimate of the rate at
which [lu||, approaches zero as A A,(d, b, m) which we know must be the case by
the results of §§2 and 3. This limitation is due to the presence of the drift term.
However, Theorem 5.1 does provide the useful global estimate [u||, = ||m+|s|Q|*>. In
the density dependent case in divergence form, we can obtain the same global estimate
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as well as estimate the rate at which [ul|, tends to zero as A= 1 (d(x,0),0, m) as the
next result shows.
THEOREM 5.2. Suppose that u is the positive solution to

—V - (d(x, w)Vu)=A[m(x)u—u’] inQ,
u=0 on 84},
where A> A,(d(x, 0),0, m) and we assume that ad/ou=0. Then

A(d(x,0),0,m
Ju = (12D

Jim. o,
0<J __*____d(x,u){Vu]"+J u3=J mu®.
N A a a

So |, mu®>0, and hence
2 d 3 2
Jus J"’ "‘J dnw) g e
Q Q a A
> d(x,0 2
éJ mu'-J -i)—c-—qu["
a a A

( )\l(d(x: O)a 0: m)) j' 2
= 1————-———;—-———— mu”

by the positivity of IQ mu® and the variational characterization of A,(d(x,0),0, m).
The remainder of the proof follows as in the proof of Theorem 5.1.

Finally, we note that in both these situations, we can obtain estimates on the rate
of decay of solutions to (2.1) which are analogous to the result of Theorem 4.7 in [6].
The modifications needed to obtain these results from Theorem 4.7 of [6] are similar
to those needed to obtain Theorems 5.1 and 5.2 above from Theorem 4.1 of [6].
Consequently, we omit them from this paper.

Proof.

5.1. Biological interpretation. The immediate biological interpretation of the
results of this section is clear. They yield bounds on the total population which our
models predict a given environment can sustain. Theorem 5.1 is less sharp than Theorem
5.2, but for regions with simple geometry X may be easier to compute than A, . A deeper
interpretation of Theorem 5.2 is that A(d, b, m) is, in fact, an appropriate measure of
environmental suitability, for in the original form of our models with A =1, Theorem
5.2 gives a bound on the population in which 1—A,(d, b, m) appears as a factor. Thus,
if we vary d, b, and m so that A,(d, b, m) approaches 1, the bound on the population
goes to zero. (We have considered only the case where the carrying capacity is taken
to be 1, but that can always be achieved by a rescaling if the carrying capacity is a
constant.)

6. Conclusions. Reaction-diffusion models have been widely used to model popu-
lation dynamics (see [4]-[7], [9], [10], [191, [201, [24], [27], [28]). We consider a class
of such models which incorporate environmental variation, drift, and density dependent
diffusion. We establish that in many cases the eigenvalue A,(d, b, m) for an associated
linear problem is a reasonable measure of environmental suitability by showing that
the condition A,(d, b, m) <1 implies persistence and obtaining upper bounds for the
population in which 1—A(d,b, m) appears as a factor. The significance of this
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observation is that A,(d, b, m) is a quantity which depends directly on the diffu-
sion, drift, and growth rates for the population and which can be computed by
using well-known (although sometimes fairly sophisticated) mathematical techniques.
In some cases we can calculate A,(d, b, m) fairly easily, but what is perhaps more
important is that we can make qualitative inferences about the effects of changing
various aspects of the environment on its overall suitability for a population as measured
by A, . Specifically, our models predict that a high degree of fragmentation of favorable
habitat increases A, and thus decreases environmental suitability, and that the presence
of drift may either increase or decrease environmental suitability. (It turns out that
under the assumption of a hostile exterior region that constant drift always decreases
the overall environmental suitability, but a spatially varying drift term may actually
increase it.) Similar conclusions have been drawn in other ways, but largely on the
basis of either heuristic arguments or different modeling viewpoints. A conclusion that
does not rely on properties of A, is that the presence of density dependent diffusion
can lead to multiple equilibria. A similar effect has been observed for models with
constant diffusion but depensatory growth rate, but the observation that multiple
equilibria can occur with a logistic growth term and density dependent diffusion is
apparently new.
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